Resilient future mathematics education for students on technical degree programmes

QAA Scotland Enhancement Conference 2022

Chris Guiver, Kate Durkacz and Firdaus Muhammad Sukki

c.guiver@napier.ac.uk

Edinburgh Napier UNIVERSITY

9th June 2022
Overview

- Background and context
- What we did
- Findings
- Recommendations and conclusions
Shall report findings of a small case study at Edinburgh Napier University broadly about

- teaching mathematics in an online/blended capacity
- for students on technical degree programmes

Project arose as a consequence of the Coronavirus pandemic, and took place over the 2020/21 academic year

Part of the QAA resilient learning communities enhancement theme within Edinburgh Napier University — internal written report available if interested
Aims

- We sought to

 1. improve our online delivery by enhancing our own practice, and learn how to better foster resilience in learners studying mathematics on technical programmes in an online or blended capacity;

 2. make potential recommendations for future blended or online-only degree programmes

- Shall focus on first aim here
Aims

- We sought to

 (1) *improve our online delivery by enhancing our own practice, and learn how to better foster resilience in learners studying mathematics on technical programmes in an online or blended capacity*;

 (2) *make potential recommendations for future blended or online-only degree programmes*

- Shall focus on first aim here
Aims

We sought to

(1) improve our online delivery by enhancing our own practice, and learn how to better foster resilience in learners studying mathematics on technical programmes in an online or blended capacity;

(2) make potential recommendations for future blended or online-only degree programmes

Shall focus on first aim here
Aims

We sought to

(1) *improve our online delivery by enhancing our own practice, and learn how to better foster resilience in learners studying mathematics on technical programmes in an online or blended capacity*;

(2) *make potential recommendations for future blended or online-only degree programmes*

Shall focus on first aim here
The project had two strands

(a) to explore resilience with (then) current first-year or direct entry students in the context of transition to HE, and;

(b) to explore with our continuing students their experiences of the switch of teaching and learning from face-to-face, to blended, and then to online-only delivery.

Project had a timeliness we sought to exploit
Strands

- The project had two strands

 (a) to explore resilience with (then) current first-year or direct entry students in the context of transition to HE, and;

 (b) to explore with our continuing students their experiences of the switch of teaching and learning from face-to-face, to blended, and then to online-only delivery.

- Project had a timeliness we sought to exploit
Strands

The project had two strands

(a) to explore resilience with (then) current first-year or direct entry students in the context of transition to HE, and;

(b) to explore with our continuing students their experiences of the switch of teaching and learning from face-to-face, to blended, and then to online-only delivery.

Project had a timeliness we sought to exploit
The project had two strands

(a) to explore resilience with (then) current first-year or direct entry students in the context of transition to HE, and;

(b) to explore with our continuing students their experiences of the switch of teaching and learning from face-to-face, to blended, and then to online-only delivery.

Project had a timeliness we sought to exploit
Key disciplinary challenge

- Mathematics is a written subject — “we do it by writing it”
- The subject requires detailed derivations and explanations of techniques, followed by examples, explored collaboratively by the lecturer and the class
- Students must then work through exercises themselves
- Both “master and apprentice” approach and iterative in nature
- Note here the distinction between writing calculations out in real time, and showing a pre-prepared slide containing calculations
Key disciplinary challenge

- Mathematics is a written subject — “we do it by writing it”
- The subject requires detailed derivations and explanations of techniques, followed by examples, explored collaboratively by the lecturer and the class
- Students must then work through exercises themselves
- Both “master and apprentice” approach and iterative in nature
- Note here the distinction between writing calculations out in real time, and showing a pre-prepared slide containing calculations
Key disciplinary challenge

- Mathematics is a written subject — “we do it by writing it”

- The subject requires detailed derivations and explanations of techniques, followed by examples, explored collaboratively by the lecturer and the class

- Students must then work through exercises themselves

- Both “master and apprentice” approach and iterative in nature

- Note here the distinction between writing calculations out in real time, and showing a pre-prepared slide containing calculations.
Key disciplinary challenge

- Mathematics is a written subject — “we do it by writing it”

- The subject requires detailed derivations and explanations of techniques, followed by examples, explored collaboratively by the lecturer and the class

- Students must then work through exercises themselves

- Both “master and apprentice” approach and iterative in nature

- Note here the distinction between writing calculations out in real time, and showing a pre-prepared slide containing calculations
Key disciplinary challenge

- Mathematics is a written subject — “we do it by writing it”

- The subject requires detailed derivations and explanations of techniques, followed by examples, explored collaboratively by the lecturer and the class

- Students must then work through exercises themselves

- Both “master and apprentice” approach and iterative in nature

- Note here the distinction between *writing calculations out in real time*, and *showing a pre-prepared slide containing calculations*
Key disciplinary challenge

- For these reasons, prior to 2020, we expect that most mathematics teaching and learning took place face-to-face across the HE sector.

- Indeed, academic staff at Napier were not trained or experienced in teaching in a blended or online-only manner.

- Also, we expect that students had not studied mathematics in this way before.
Key disciplinary challenge

- For these reasons, prior to 2020, we expect that most mathematics teaching and learning took place face-to-face across the HE sector.

- Indeed, academic staff at Napier were not trained or experienced in teaching in a blended or online-only manner.

- Also, we expect that students had not studied mathematics in this way before.
Key disciplinary challenge

- For these reasons, prior to 2020, we expect that most mathematics teaching and learning took place face-to-face across the HE sector.

- Indeed, academic staff at Napier were not trained or experienced in teaching in a blended or online-only manner.

- Also, we expect that students had not studied mathematics in this way before.
Typical (simplified) face-to-face tutorial session:

- Teacher: “The sheet for today is Tutorial Sheet 4.1.”
 (....class start working on tutorial sheet.....)

- Student: “I am stuck on question 4. Please can you help?”

- Teacher: “Ok. Let me see what you have done so far.”

Even seeing a student’s work can be challenging in an online environment.
Key disciplinary challenge

- Typical (simplified) face-to-face tutorial session:
 - Teacher: “The sheet for today is Tutorial Sheet 4.1.”
 - (class start working on tutorial sheet)
 - Student: “I am stuck on question 4. Please can you help?”
 - Teacher: “Ok. Let me see what you have done so far.”

- Even seeing a student’s work can be challenging in an online environment
Typical (simplified) face-to-face tutorial session:

- Teacher: “The sheet for today is Tutorial Sheet 4.1.”
 (....class start working on tutorial sheet.....)

- Student: “I am stuck on question 4. Please can you help?”

- Teacher: “Ok. Let me see what you have done so far.”

Even seeing a student’s work can be challenging in an online environment
Typical (simplified) face-to-face tutorial session:

▶ Teacher: “The sheet for today is Tutorial Sheet 4.1.”
 (....class start working on tutorial sheet.....)

▶ Student: “I am stuck on question 4. Please can you help?”

▶ Teacher: “Ok. Let me see what you have done so far.”

Even seeing a student’s work can be challenging in an online environment.
Key disciplinary challenge

- Typical (simplified) face-to-face tutorial session:
 - Teacher: “The sheet for today is Tutorial Sheet 4.1.”
 (....class start working on tutorial sheet.....)

 - Student: “I am stuck on question 4. Please can you help?”

 - Teacher: “Ok. Let me see what you have done so far.”

- Even seeing a student’s work can be challenging in an online environment
Setting the scene

- In Trimester 1 (Autumn 2020) most students had some face-to-face teaching, with maths prioritised

- In Trimester 2 (Spring 2021) all students had teaching via VLE only

- Teaching comprises
 - Lectures
 - Tutorial sessions, supported by peer tutors
 - Computer labs, although these were not possible in 2020/21

- The maths support drop-in clinic, MathsPlus at Edinburgh Napier University, ran online in both trimesters
Setting the scene

- In Trimester 1 (Autumn 2020) most students had some face-to-face teaching, with maths prioritised

- In Trimester 2 (Spring 2021) all students had teaching via VLE only

- Teaching comprises
 - Lectures
 - Tutorial sessions, supported by peer tutors
 - Computer labs, although these were not possible in 2020/21

- The maths support dropin clinic, MathsPlus at Edinburgh Napier University, ran online in both trimesters
Setting the scene

- In Trimester 1 (Autumn 2020) most students had some face-to-face teaching, with maths prioritised

- In Trimester 2 (Spring 2021) all students had teaching via VLE only

- Teaching comprises
 - Lectures
 - Tutorial sessions, supported by peer tutors
 - Computer labs, although these were not possible in 2020/21

- The maths support dropin clinic, MathsPlus at Edinburgh Napier University, ran online in both trimesters
Setting the scene

- In Trimester 1 (Autumn 2020) most students had some face-to-face teaching, with maths prioritised

- In Trimester 2 (Spring 2021) all students had teaching via VLE only

- Teaching comprises
 - Lectures
 - Tutorial sessions, supported by peer tutors
 - Computer labs, although these were not possible in 2020/21

- The maths support dropin clinic, MathsPlus at Edinburgh Napier University, ran online in both trimesters
Setting the scene

- In Trimester 1 (Autumn 2020) most students had some face-to-face teaching, with maths prioritised

- In Trimester 2 (Spring 2021) all students had teaching via VLE only

Teaching comprises

- Lectures

- Tutorial sessions, supported by peer tutors

- Computer labs, although these were not possible in 2020/21

- The maths support dropin clinic, MathsPlus at Edinburgh Napier University, ran online in both trimesters
Setting the scene

- In Trimester 1 (Autumn 2020) most students had some face-to-face teaching, with maths prioritised

- In Trimester 2 (Spring 2021) all students had teaching via VLE only

- Teaching comprises
 - Lectures
 - Tutorial sessions, supported by peer tutors
 - Computer labs, although these were not possible in 2020/21

- The maths support dropin clinic, MathsPlus at Edinburgh Napier University, ran online in both trimesters
Setting the scene

- In Trimester 1 (Autumn 2020) most students had some face-to-face teaching, with maths prioritised

- In Trimester 2 (Spring 2021) all students had teaching via VLE only

- Teaching comprises
 - Lectures
 - Tutorial sessions, supported by peer tutors
 - Computer labs, although these were not possible in 2020/21

- The maths support dropin clinic, MathsPlus at Edinburgh Napier University, ran online in both trimesters
What we did

- We proposed a series of focus groups with first- and second-year engineering students

- Groups organised along two the strands (transition to HE and continuing students)

- Intention was to explore resilience — broadly
 - What had gone well with teaching and learning online, and what had not?
 - How had the students gotten on?
 - How could the experience be improved?
What we did

- We proposed a series of focus groups with first- and second-year engineering students

- Groups organised along two the strands (transition to HE and continuing students)

- Intention was to explore resilience — broadly
 - What had gone well with teaching and learning online, and what had not?
 - How had the students gotten on?
 - How could the experience be improved?
What we did

- We proposed a series of focus groups with first- and second-year engineering students

- Groups organised along two the strands (transition to HE and continuing students)

- Intention was to explore resilience — broadly
 - What had gone well with teaching and learning online, and what had not?
 - How had the students gotten on?
 - How could the experience be improved?
What we did

- We proposed a series of focus groups with first- and second-year engineering students.

- Groups organised along two the strands (transition to HE and continuing students).

- Intention was to explore resilience — broadly:
 - What had gone well with teaching and learning online, and what had not?
 - How had the students gotten on?
 - How could the experience be improved?
What we did

- We proposed a series of focus groups with first- and second-year engineering students
- Groups organised along two the strands (transition to HE and continuing students)
- Intention was to explore resilience — broadly
 - What had gone well with teaching and learning online, and what had not?
 - How had the students gotten on?
 - How could the experience be improved?
What we did

- We proposed a series of focus groups with first- and second-year engineering students

- Groups organised along two the strands (transition to HE and continuing students)

- Intention was to explore resilience — broadly
 - What had gone well with teaching and learning online, and what had not?
 - How had the students gotten on?
 - How could the experience be improved?
What we did

- **Spoiler alert:** we found it very difficult to encourage students to participate, despite a modest financial incentive

- Of funds for at most 32 students, we recruited only six

- Consequently, findings based on the focus groups are perhaps somewhat anecdotal and we expect not-so-representative
What we did

- **Spoiler alert:** we found it very difficult to encourage students to participate, despite a modest financial incentive

- Of funds for at most 32 students, we recruited only six

- Consequently, findings based on the focus groups are perhaps somewhat anecdotal and we expect not-so-representative
What we did

- **Spoiler alert:** we found it very difficult to encourage students to participate, despite a modest financial incentive.

- Of funds for at most 32 students, we recruited only six.

- Consequently, findings based on the focus groups are perhaps somewhat anecdotal and we expect not-so-representative.
Question 2
• In Trimester 1 we had a combination of face-to-face classes and online classes
• We tried to have as much face-to-face teaching as possible given the constraints on rooms, class sizes, timetabling etc
• In trimester 2 we have been allowed no face-to-face classes

Have you preferred face to face teaching or the online classes? Does this depend on the lecturer or subject material?

Question 3
• When teaching mathematics to engineering and computer science students there are usually four types of timetabled activities
 • Lecture
 • Tutorial
 • Computer lab
 • Workshop/drop in session (MathsPlus at Napier)

Which of these do you think work well when delivered online, and which do not, and why? If you decided your future timetable, how would you schedule each of the above activities?

Question 4
• Technology plays an important role in facilitating teaching and learning

Which technologies have worked well for delivering maths or technical subjects online, and which have not? Do you feel you have had the correct IT equipment to engage with classes? Is there additional or different IT equipment which would help?

Question 5
• And finally

What have we missed or overlooked? Do you have any comments or reflections on your experiences over the past academic year which these questions have not addressed?
Feedback from Focus Groups — 1

Summary of comments from two first-year students

- Delivering the modules online had broadly worked well
- Face-to-face teaching preferred — but recordings valued
- Having a second screen was more important than having their own writing tablet
- Discussion about using cameras in class — much wider issue
- Students would have looked at materials in advance of arriving at university
- Actually expected more maths on the degree
Feedback from Focus Groups — 1

Summary of comments from two first-year students

- Delivering the modules online had broadly worked well
- Face-to-face teaching preferred — but recordings valued
 - Having a second screen was more important than having their own writing tablet
 - Discussion about using cameras in class — much wider issue
- Students would have looked at materials in advance of arriving at university
- Actually expected more maths on the degree
Feedback from Focus Groups — 1

Summary of comments from two first-year students

- Delivering the modules online had broadly worked well
- Face-to-face teaching preferred — but recordings valued
- Having a second screen was more important than having their own writing tablet
- Discussion about using cameras in class — much wider issue
- Students would have looked at materials in advance of arriving at university
- Actually expected more maths on the degree
Feedback from Focus Groups — 1

Summary of comments from two first-year students

- Delivering the modules online had broadly worked well
- Face-to-face teaching preferred — but recordings valued
- Having a second screen was more important than having their own writing tablet
- Discussion about using cameras in class — much wider issue
- Students would have looked at materials in advance of arriving at university
- Actually expected more maths on the degree
Summary of comments from two first-year students

- Delivering the modules online had broadly worked well
- Face-to-face teaching preferred — but recordings valued
- Having a second screen was more important than having their own writing tablet
- Discussion about using cameras in class — much wider issue
- Students would have looked at materials in advance of arriving at university
- Actually expected more maths on the degree
Feedback from Focus Groups — 1

Summary of comments from two first-year students

- Delivering the modules online had broadly worked well
- Face-to-face teaching preferred — but recordings valued
- Having a second screen was more important than having their own writing tablet
- Discussion about using cameras in class — much wider issue
- Students would have looked at materials in advance of arriving at university
- Actually expected more maths on the degree
Summary of comments from two first-year students

- Missed the structure and routine of university day
- Found it hard to see other students
- Face-to-face teaching preferred
- Graphics tablets for delivering the modules online worked well
- Discussion about moving back to standard patterns of assessment — such as face-to-face examinations
Feedback from Focus Groups — 2

Summary of comments from two first-year students

- Missed the structure and routine of university day
- Found it hard to see other students
- Face-to-face teaching preferred
- Graphics tablets for delivering the modules online worked well
- Discussion about moving back to standard patterns of assessment — such as face-to-face examinations
Feedback from Focus Groups — 2

Summary of comments from two first-year students

- Missed the structure and routine of university day
- Found it hard to see other students
- Face-to-face teaching preferred
- Graphics tablets for delivering the modules online worked well
- Discussion about moving back to standard patterns of assessment — such as face-to-face examinations
Summary of comments from two first-year students

- Missed the structure and routine of university day
- Found it hard to see other students
- Face-to-face teaching preferred
- Graphics tablets for delivering the modules online worked well
- Discussion about moving back to standard patterns of assessment — such as face-to-face examinations
Summary of comments from two first-year students

- Missed the structure and routine of university day
- Found it hard to see other students
- Face-to-face teaching preferred
- Graphics tablets for delivering the modules online worked well
- Discussion about moving back to standard patterns of assessment — such as face-to-face examinations
Our own reflections

As a group of (five) academics, we also reflected on teaching and learning in the 2020/21 academic year

- Broadly agreed with student views
- Having correct equipment is essential, also for peer tutors
- Lectures (large classes, not so interactive) and individual meetings work well-enough online
- Tutorials (mid-size, highly interactive) are currently harder to run effectively online
- MathsPlus attendance was much lower when online only
Our own reflections

As a group of (five) academics, we also reflected on teaching and learning in the 2020/21 academic year

- Broadly agreed with student views

- Having correct equipment is essential, also for peer tutors

- Lectures (large classes, not so interactive) and individual meetings work well-enough online

- Tutorials (mid-size, highly interactive) are currently harder to run effectively online

- MathsPlus attendance was much lower when online only
Our own reflections

As a group of (five) academics, we also reflected on teaching and learning in the 2020/21 academic year

- Broadly agreed with student views
- Having correct equipment is essential, also for peer tutors
- **Lectures** (large classes, not so interactive) and **individual meetings** work well-enough online
- **Tutorials** (mid-size, highly interactive) are currently harder to run effectively online
- MathsPlus attendance was much lower when online only
Our own reflections

As a group of (five) academics, we also reflected on teaching and learning in the 2020/21 academic year

- Broadly agreed with student views

- Having correct equipment is essential, also for peer tutors

- **Lectures** (large classes, not so interactive) and **individual meetings** work well enough online

- **Tutorials** (mid-size, highly interactive) are currently harder to run effectively online

- MathsPlus attendance was much lower when online only
Our own reflections

As a group of (five) academics, we also reflected on teaching and learning in the 2020/21 academic year

- Broadly agreed with student views
- Having correct equipment is essential, also for peer tutors
- **Lectures** (large classes, not so interactive) and **individual meetings** work well-enough online
- **Tutorials** (mid-size, highly interactive) are currently harder to run effectively online
- MathsPlus attendance was much lower when online only
Assessments in the 2020/21 academic year were largely online

One consideration is (additional) workload

It is possible to download, mark and upload online assessments easily using a combination of

▶ freely available pdf-annotating software (such as DrawboardPDF)
▶ assessment functionality of Moodle (expect other VLEs as well)

This relies on students creating a suitable document for upload — a single (ideally pdf) document of their work, which requires practice.

Students emailing multiple image files greatly increases the marking burden
Assessment

Assessments in the 2020/21 academic year were largely online

One consideration is (additional) workload

It is possible to download, mark and upload online assessments easily using a combination of

- freely available pdf-annotating software (such as DrawboardPDF)
- assessment functionality of Moodle (expect other VLEs as well)

This relies on students creating a suitable document for upload — a single (ideally pdf) document of their work, which requires practice.

Students emailing multiple image files greatly increases the marking burden.
Assessment

- Assessments in the 2020/21 academic year were largely online

- One consideration is (additional) workload

- It is possible to download, mark and upload online assessments easily using a combination of
 - freely available pdf-annotating software (such as DrawboardPDF)
 - assessment functionality of Moodle (expect other VLEs as well)

- This relies on students creating a suitable document for upload — a single (ideally pdf) document of their work, which requires practice

- Students emailing multiple image files greatly increases the marking burden
Assessment

- Assessments in the 2020/21 academic year were largely online.

- One consideration is (additional) workload.

- It is possible to download, mark and upload online assessments easily using a combination of:
 - freely available pdf-annotating software (such as DrawboardPDF)
 - assessment functionality of Moodle (expect other VLEs as well)

- This relies on students creating a suitable document for upload — a single (ideally pdf) document of their work, which requires practice.

- Students emailing multiple image files greatly increases the marking burden.
Assessment

• Assessments in the 2020/21 academic year were largely online

• One consideration is (additional) workload

• It is possible to download, mark and upload online assessments easily using a combination of

 ▶ freely available pdf-annotating software (such as DrawboardPDF)
 ▶ assessment functionality of Moodle (expect other VLEs as well)

• This relies on students creating a suitable document for upload — a single (ideally pdf) document of their work, which requires practice.

• Students emailing multiple image files greatly increases the marking burden
Assessment

- Assessments in the 2020/21 academic year were largely online

- One consideration is (additional) workload

- It is possible to download, mark and upload online assessments easily using a combination of
 - freely available pdf-annotating software (such as DrawboardPDF)
 - assessment functionality of Moodle (expect other VLEs as well)

- This relies on students creating a suitable document for upload — a single (ideally pdf) document of their work, which requires practice

- Students emailing multiple image files greatly increases the marking burden
Assessment

Assessments in the 2020/21 academic year were largely online.

One consideration is (additional) workload.

It is possible to download, mark and upload online assessments easily using a combination of:

- freely available pdf-annotating software (such as DrawboardPDF)
- assessment functionality of Moodle (expect other VLEs as well)

This relies on students creating a suitable document for upload — a single (ideally pdf) document of their work, which requires practice.

Students emailing multiple image files greatly increases the marking burden.
Academic integrity

- Not currently discussed

- Was not a key consideration in current project — focussed more on delivery and student experience of teaching and learning

- We are aware of issues of academic integrity in online assessments — particularly with calculation-based (mathematical) subjects

- We are not sure how widespread — although anecdotally quite problematic

- Believe that wider context is a drive to return to face-to-face examinations for technical subjects, we broadly support this
Academic integrity

- Not currently discussed

- Was not a key consideration in current project — focussed more on delivery and student experience of teaching and learning

- We are aware of issues of academic integrity in online assessments — particularly with calculation-based (mathematical) subjects

- We are not sure how widespread — although anecdotally quite problematic

- Believe that wider context is a drive to return to face-to-face examinations for technical subjects, we broadly support this.
Academic integrity

- Not currently discussed

- Was not a key consideration in current project — focussed more on delivery and student experience of teaching and learning

- We are aware of issues of academic integrity in online assessments — particularly with calculation-based (mathematical) subjects

- We are not sure how widespread — although anecdotally quite problematic

- Believe that wider context is a drive to return to face-to-face examinations for technical subjects, we broadly support this
Academic integrity

- Not currently discussed

- Was not a key consideration in current project — focussed more on delivery and student experience of teaching and learning

- We are aware of issues of academic integrity in online assessments — particularly with calculation-based (mathematical) subjects

- We are not sure how widespread — although anecdotally quite problematic

- Believe that wider context is a drive to return to face-to-face examinations for technical subjects, we broadly support this
Academic integrity

- Not currently discussed

- Was not a key consideration in current project — focussed more on delivery and student experience of teaching and learning

- We are aware of issues of academic integrity in online assessments — particularly with calculation-based (mathematical) subjects

- We are not sure how widespread — although anecdotally quite problematic

- Believe that wider context is a drive to return to face-to-face examinations for technical subjects, we broadly support this
Recommendations

- We propose recommendations, organised at the level of the module and the programme

- These comprise the bulk of our conclusions

- Based on focus-groups and our own reflections
Recommendations

- We propose recommendations, organised at the level of the module and the programme

- These comprise the bulk of our conclusions

- Based on focus-groups and our own reflections
Recommendations

- We propose recommendations, organised at the level of the module and the programme.
- These comprise the bulk of our conclusions.
- Based on focus-groups and our own reflections.
Module recommendations

- It is essential to be able to handwrite mathematical content in class.
- Peer tutors (teaching assistants) need the correct equipment as well.
- Classes should be recorded and recordings made available where possible — this is straightforward with online delivery.
- There is some interest on having pre-course maths material made available for first-year modules — typical issue of how to get students advanced access.
Module recommendations

- It is essential to be able to handwrite mathematical content in class.
- Peer tutors (teaching assistants) need the correct equipment as well.
- Classes should be recorded and recordings made available where possible — this is straightforward with online delivery.
- There is some interest on having pre-course maths material made available for first-year modules — typical issue of how to get students advanced access.
Module recommendations

- It is essential to be able to handwrite mathematical content in class.
- Peer tutors (teaching assistants) need the correct equipment as well.
- Classes should be recorded and recordings made available where possible — this is straightforward with online delivery.
- There is some interest on having pre-course maths material made available for first-year modules — typical issue of how to get students advanced access.
Module recommendations

- It is essential to be able to handwrite mathematical content in class.
- Peer tutors (teaching assistants) need the correct equipment as well.
- Classes should be recorded and recordings made available where possible — this is straightforward with online delivery.
- There is some interest on having pre-course maths material made available for first-year modules — typical issue of how to get students advanced access.
Programme recommendations

- Many practical courses cannot be run online only
- Mathematics support should primarily be held face-to-face
- Some students indicated that online maths support would be welcome
- Consider raising student awareness of importance of participating in online classes, meaning asking questions, turning cameras on, using the chat, and so on
- Be aware of students caught in “hybrid degrees” — varying assessment patterns
- Dual degrees (face-to-face and online) increases resources required for delivery
Programme recommendations

- Many practical courses cannot be run online only
- Mathematics support should primarily be held face-to-face
- Some students indicated that online maths support would be welcome
- Consider raising student awareness of importance of participating in online classes, meaning asking questions, turning cameras on, using the chat, and so on
- Be aware of students caught in “hybrid degrees” — varying assessment patterns
- Dual degrees (face-to-face and online) increases resources required for delivery
Programme recommendations

- Many practical courses cannot be run online only
- Mathematics support should primarily be held face-to-face
- Some students indicated that online maths support would be welcome
- Consider raising student awareness of importance of participating in online classes, meaning asking questions, turning cameras on, using the chat, and so on
- Be aware of students caught in “hybrid degrees” — varying assessment patterns
- Dual degrees (face-to-face and online) increases resources required for delivery
Programme recommendations

- Many practical courses cannot be run online only
- Mathematics support should primarily be held face-to-face
- Some students indicated that online maths support would be welcome
- Consider raising student awareness of importance of participating in online classes, meaning asking questions, turning cameras on, using the chat, and so on
- Be aware of students caught in “hybrid degrees” — varying assessment patterns
- Dual degrees (face-to-face and online) increases resources required for delivery
Programme recommendations

- Many practical courses cannot be run online only
- Mathematics support should primarily be held face-to-face
- Some students indicated that online maths support would be welcome
- Consider raising student awareness of importance of participating in online classes, meaning asking questions, turning cameras on, using the chat, and so on
- Be aware of students caught in “hybrid degrees” — varying assessment patterns
- Dual degrees (face-to-face and online) increases resources required for delivery
Programme recommendations

- Many practical courses cannot be run online only
- Mathematics support should primarily be held face-to-face
- Some students indicated that online maths support would be welcome
- Consider raising student awareness of importance of participating in online classes, meaning asking questions, turning cameras on, using the chat, and so on
- Be aware of students caught in “hybrid degrees” — varying assessment patterns
- Dual degrees (face-to-face and online) increases resources required for delivery
Further conclusions

- The students who engaged with the focus groups gave helpful insights.

- However, encouraging students to participate in these sorts of teaching and learning enhancement activities, even with incentives, can be challenging.

- More work is needed to persuade students to engage in online classes.

- Mathematics for non-specialist students can be taught online if needed:
 - Lectures are the easiest to replicate, and worked well.
 - Tutorials (smaller interactive sessions) did not work as well, and should be prioritised for face-to-face delivery.
 - We expect the same is true for computer labs.
Further conclusions

- The students who engaged with the focus groups gave helpful insights.

- However, encouraging students to participate in these sorts of teaching and learning enhancement activities, even with incentives, can be challenging.

- More work is needed to persuade students to engage in online classes.

- Mathematics for non-specialist students can be taught online if needed.
 - Lectures are the easiest to replicate, and worked well.
 - Tutorials (smaller interactive sessions) did not work as well, and should be prioritised for face-to-face delivery.
 - We expect the same is true for computer labs.
Further conclusions

- The students who engaged with the focus groups gave helpful insights.
- However, encouraging students to participate in these sorts of teaching and learning enhancement activities, even with incentives, can be challenging.
- More work is needed to persuade students to engage in online classes.
- Mathematics for non-specialist students can be taught online if needed.
 - Lectures are the easiest to replicate, and worked well.
 - Tutorials (smaller interactive sessions) did not work as well, and should be prioritised for face-to-face delivery.
 - We expect the same is true for computer labs.
Further conclusions

- The students who engaged with the focus groups gave helpful insights.

- However, encouraging students to participate in these sorts of teaching and learning enhancement activities, even with incentives, can be challenging.

- More work is needed to persuade students to engage in online classes.

- Mathematics for non-specialist students can be taught online if needed:
 - Lectures are the easiest to replicate, and worked well.
 - Tutorials (smaller interactive sessions) did not work as well, and should be prioritised for face-to-face delivery.
 - We expect the same is true for computer labs.
Further conclusions

- The students who engaged with the focus groups gave helpful insights.

- However, encouraging students to participate in these sorts of teaching and learning enhancement activities, even with incentives, can be challenging.

- More work is needed to persuade students to engage in online classes.

- Mathematics for non-specialist students can be taught online if needed:
 - Lectures are the easiest to replicate, and worked well.
 - Tutorials (smaller interactive sessions) did not work as well, and should be prioritised for face-to-face delivery.
 - We expect the same is true for computer labs.
Further conclusions

- The students who engaged with the focus groups gave helpful insights.
- However, encouraging students to participate in these sorts of teaching and learning enhancement activities, even with incentives, can be challenging.
- More work is needed to persuade students to engage in online classes.
- Mathematics for non-specialist students can be taught online if needed.
 - Lectures are the easiest to replicate, and worked well.
 - Tutorials (smaller interactive sessions) did not work as well, and should be prioritised for face-to-face delivery.
 - We expect the same is true for computer labs.
Further conclusions

- The students who engaged with the focus groups gave helpful insights.

- However, encouraging students to participate in these sorts of teaching and learning enhancement activities, even with incentives, can be challenging.

- More work is needed to persuade students to engage in online classes.

- Mathematics for non-specialist students can be taught online if needed:
 - Lectures are the easiest to replicate, and worked well.
 - Tutorials (smaller interactive sessions) did not work as well, and should be prioritised for face-to-face delivery.
 - We expect the same is true for computer labs.
Revisiting resilience

How do these findings relate back to resilient learning communities?

Two potential answers

▶ As educators — being better-prepared for potential future shocks to UK HE, such as another pandemic

▶ For students — helping them get the most out of online teaching and learning, particularly mathematics and technical subjects, so that they stay engaged, and ultimately have a better student experience and degree outcome
Revisiting resilience

- How do these findings relate back to resilient learning communities?

- Two potential answers

 - As educators — being better-prepared for potential future shocks to UK HE, such as another pandemic

 - For students — helping them get the most out of online teaching and learning, particularly mathematics and technical subjects, so that they stay engaged, and ultimately have a better student experience and degree outcome
Revisiting resilience

How do these findings relate back to resilient learning communities?

Two potential answers

- As educators — being better-prepared for potential future shocks to UK HE, such as another pandemic
- For students — helping them get the most out of online teaching and learning, particularly mathematics and technical subjects, so that they stay engaged, and ultimately have a better student experience and degree outcome
Revisiting resilience

How do these findings relate back to resilient learning communities?

Two potential answers

- As educators — being better-prepared for potential future shocks to UK HE, such as another pandemic
- For students — helping them get the most out of online teaching and learning, particularly mathematics and technical subjects, so that they stay engaged, and ultimately have a better student experience and degree outcome
We conducted a small enhancement theme project to explore how to enhance our practice delivering mathematics education for non-specialist students online.

Motivation is that we may need to transition back to VLE only/blended delivery at short notice.

Although small, some relevant practices have been identified.

Some issues such as academic integrity of assessments not addressed by project.

May inform future hybrid degree design.

Thanks for listening!
We conducted a small enhancement theme project to explore how to enhance our practice delivering mathematics education for non-specialist students online.

Motivation is that we may need to transition back to VLE only/blended delivery at short notice.

Although small, some relevant practices have been identified.

Some issues such as academic integrity of assessments not addressed by project.

May inform future hybrid degree design.

Thanks for listening!
Summary

- We conducted a small enhancement theme project to explore how to enhance our practice delivering mathematics education for non-specialist students online.

- Motivation is that we may need to transition back to VLE only/blended delivery at short notice.

- Although small, some relevant practices have been identified.
 - Some issues such as academic integrity of assessments not addressed by project.
 - May inform future hybrid degree design.

- Thanks for listening!
Summary

- We conducted a small enhancement theme project to explore how to enhance our practice delivering mathematics education for non-specialist students online.

- Motivation is that we may need to transition back to VLE only/blended delivery at short notice.

- Although small, some relevant practices have been identified.

- Some issues such as academic integrity of assessments not addressed by project.

- May inform future hybrid degree design.

- Thanks for listening!
Summary

- We conducted a small enhancement theme project to explore how to enhance our practice delivering mathematics education for non-specialist students online.

- Motivation is that we may need to transition back to VLE only/blended delivery at short notice.

- Although small, some relevant practices have been identified.

- Some issues such as academic integrity of assessments not addressed by project.

- May inform future hybrid degree design.

Thanks for listening!
Summary

- We conducted a small enhancement theme project to explore how to enhance our practice delivering mathematics education for non-specialist students online.

- Motivation is that we may need to transition back to VLE only/blended delivery at short notice.

- Although small, some relevant practices have been identified.

- Some issues such as academic integrity of assessments not addressed by project.

- May inform future hybrid degree design.

- Thanks for listening!